Preparation of PdCu Alloy Nanocatalysts for Nitrate Hydrogenation and Carbon Monoxide Oxidation
نویسندگان
چکیده
Alloying Pd with Cu is important for catalytic reactions such as denitrification reaction and CO oxidation reaction, but understanding of the catalyst preparation and its correlation with the catalyst’s activity and selectivity remains elusive. Herein, we report the results of investigations of the preparation of PdCu alloy nanocatalysts using different methods and the catalytic properties of the catalysts in catalytic denitrification reaction and CO oxidation reaction. PdCu alloy nanocatalysts were prepared by conventional dry impregnation method and ligand-capping based wet chemical synthesis method, and subsequent thermochemical activation as well. The alloying characteristics depend on the bimetallic composition. PdCu/Al2O3 with a Pd/Cu ratio of 50:50 was shown to exhibit an optimized hydrogenation activity for the catalytic denitrification reaction. The catalytic activity of the PdCu catalysts was shown to be highly dependent on the support, as evidenced by the observation of an enhanced catalytic activity for CO oxidation reaction using TiO2 and CeO2 supports with high oxygen storage capacity. Implications of the results to the refinement of the preparation of the alloy nanocatalysts are also discussed.
منابع مشابه
Heterogeneous catalysts—discovery and design
Heterogeneous catalysis plays a key role in the manufacture of essential products in key areas of agriculture and pharmaceuticals, but also in the production of polymers and numerous essential materials. Our understanding of heterogeneous catalysts is advancing rapidly, especially by using the latest characterisation methods on these relatively complex effect materials. At the heart of these ca...
متن کاملSurface restructuring of Cu-based single-atom alloy catalysts under reaction conditions: the essential role of adsorbates.
The stabilities and catalytic performances of single-atom alloy (SAA) structures under the reaction conditions of acetylene hydrogenation are thoroughly examined utilizing density functional theory (DFT) calculations. Four Cu-based alloys with stable SAA structures reported before, namely PdCu, PtCu, RhCu and NiCu alloys, are investigated here. We find that the SAA structures of PdCu and PtCu a...
متن کاملDendrimer-encapsulated nanoparticle precursors to supported platinum catalysts.
In this contribution, we report the successful preparation of supported metal catalysts using dendrimer-encapsulated Pt nanoparticles as metal precursors. Polyamidoamine (PAMAM) dendrimers were first used to template and stabilize Pt nanoparticles prepared in solution. These dendrimer-encapsulated nanoparticles were then deposited onto a commercial high surface area silica support and thermally...
متن کاملCatalytic Oxidation of Carbon Monoxide by Cobalt Oxide Catalysts Supported on Oxidized-MWCNT
Cobalt oxide catalysts supported on oxidized multi-walled carbon nanotubes (MWCNT) for the low-temperature catalytic oxidation of carbon monoxide were prepared by an impregnation-ultrasound method. These catalysts were characterized by N2 adsorption/desorption, TEM, XRD, Raman, and H2-TPR methods. The XRD and Raman results indicated that the phase of the synthesized cobalt...
متن کاملThree-dimensional hyperbranched PdCu nanostructures with high electrocatalytic activity.
In this study, three-dimensional (3D) PdCu alloyed nanostructures, consisting of one-dimensional (1D) branches, were successfully synthesized through a facile wet-chemical method without using any seeds or organic solvent. The success of this approach relies on the use of hydrochloric acid (HCl) to control the reduction rate, and on the presence of bromide ions (Br(-)) to selectively adsorb on ...
متن کامل